Support Refhub: Together for Knowledge and Culture
Dear friends,
As you know, Refhub.ir has always been a valuable resource for accessing free and legal books, striving to make knowledge and culture available to everyone. However, due to the current situation and the ongoing war between Iran and Israel, we are facing significant challenges in maintaining our infrastructure and services.
Unfortunately, with the onset of this conflict, our revenue streams have been severely impacted, and we can no longer cover the costs of servers, developers, and storage space. We need your support to continue our activities and develop a free and efficient AI-powered e-reader for you.
To overcome this crisis, we need to raise approximately $5,000. Every user can help us with a minimum of just $1. If we are unable to gather this amount within the next two months, we will be forced to shut down our servers permanently.
Your contributions can make a significant difference in helping us get through this difficult time and continue to serve you. Your support means the world to us, and every donation, big or small, can have a significant impact on our ability to continue our mission.
You can help us through the cryptocurrency payment gateway available on our website. Every step you take is a step towards expanding knowledge and culture.
Thank you so much for your support,
The Refhub Team
Donate NowIntroduction to Statistical Relational Learning (Adaptive Computation and Machine Learning) (Adaptive Computation and Machine Learning Series)
4.5
Reviews from our users
You Can Ask your questions from this book's AI after Login
Each download or ask from book AI costs 2 points. To earn more free points, please visit the Points Guide Page and complete some valuable actions.Related Refrences:
Persian Summary
Introduction to Statistical Relational Learning
Statistical Relational Learning (SRL) is a growing area of research that melds two crucial fields: statistics and artificial intelligence. This volume, "Introduction to Statistical Relational Learning", stands as a seminal text in the Adaptive Computation and Machine Learning series, with contributions from leading minds like Lise Getoor and Ben Taskar, among others. Aimed at guiding researchers, practitioners, and advanced students, this book offers an enriching dive into the synergies and innovations possible when statistics meet relational data management.
Detailed Summary of the Book
The book provides a comprehensive introduction to SRL, emphasizing the integration of probabilistic reasoning with relational data modeling. It spans the basic principles of SRL, methodologies for learning and inference in domains that are at once dynamic and richly structured, and applications across various sectors. The work begins with a foundational review of probability theory and relational databases, stepping into more nuanced topics such as graphical models and relational knowledge bases.
The reader is taken through various SRL frameworks including but not limited to Probabilistic Relational Models (PRMs), Relational Markov Networks (RMNs), and Markov Logic Networks (MLNs). Each framework is presented with a theoretical grounding, complemented by case studies and practical applications to elucidate their real-world relevance.
Special attention is given to the challenges and solutions related to scalability and efficiency, a critical consideration as datasets grow in complexity. By synthesizing these theoretical discussions with practical implementation insights, the book equips readers with the capability to conceptualize and solve sophisticated relational learning tasks efficiently.
Key Takeaways
- Unified Theories: Understand how SRL unifies statistical and relational models to manage uncertainty in complex domains.
- Diverse Applications: Explore applications ranging from computational biology to social network analysis, demonstrating the vast potential of SRL frameworks.
- Scalability: Learn solutions to scalability issues critical to handling large relational data efficiently.
- Framework Mastery: Gain comprehensive insights into major SRL models like PRMs, RMNs, and MLNs.
Famous Quotes from the Book
"Incorporating uncertainty into the rich relational structures of knowledge bases is critical to advancing machine learning capabilities."
"Structured representations complemented by probabilistic semantics open pathways to applications previously deemed untenable."
Why This Book Matters
This book holds significance in the modern data science landscape where data is rarely clean or isolated. It advocates for a paradigm that acknowledges relational complexities and probabilistic uncertainties, offering robust frameworks to address these challenges. For industries relying on AI and data analytics, the concepts in SRL facilitate more informed decision-making and trend predictions. Furthermore, as data-driven insights become integral across more sectors, SRL represents an indispensable toolkit for pushing the limits of current machine learning models.
With contributions from leaders in the field, the book is not only an educational resource but a starting point for anyone interested in the frontier of AI research. By codifying core concepts and exploring future directions, Introduction to Statistical Relational Learning is both a guide and an inspiration for reshaping how relational data is utilized in our increasingly data-centric world.
Free Direct Download
Get Free Access to Download this and other Thousands of Books (Join Now)
For read this book you need PDF Reader Software like Foxit Reader