Statistical Reinforcement Learning: Modern Machine Learning Approaches

4.4

Reviews from our users

You Can Ask your questions from this book's AI after Login
Each download or ask from book AI costs 2 points. To earn more free points, please visit the Points Guide Page and complete some valuable actions.

Related Refrences:

Reinforcement learning (RL) is a framework for decision making in unknown environments based on a large amount of data. Several practical RL applications for business intelligence, plant control, and game players have been successfully explored in recent years. Providing an accessible introduction to the field, this book covers model-based and model-free approaches, policy iteration, and policy search methods. It presents illustrative examples and state-of-the-art results, including dimensionality reduction in RL and risk-sensitive RLm. The book provides a bridge between RL and data mining and machine learning research.

Free Direct Download

Get Free Access to Download this and other Thousands of Books (Join Now)

For read this book you need PDF Reader Software like Foxit Reader

Reviews:


4.4

Based on 0 users review