Pandas Cookbook

4.3

Reviews from our users

You Can Ask your questions from this book's AI after Login
Each download or ask from book AI costs 2 points. To earn more free points, please visit the Points Guide Page and complete some valuable actions.

Key Features Learn to use the power of Pandas to solve most complex scientific computing problems Leverage fast, robust data structures in Pandas to gain most from your data Perform various data analysis tasks efficiently with ease Book DescriptionPandas is one of the most efficient scientific computing packages in Python. It has an enormous amount of power and flexibility to tackle any data task in a variety of ways. It is common for advanced users to write “ugly” Pandas code. With this book, you will explore data in Pandas through dozens of practice problems with detailed solutions in iPython notebooksThis book will provide you with clean, clear recipes and solutions on how to handle common data manipulation tasks. You will be introduced to Pandas and its various features. You will learn about working with different types of data sets, data manipulation, and data wrangling. You will explore the power of Pandas DataFrames and find out about Boolean and multi-indexing with Pandas. You will perform statistical, time series computations, and implement them in financial and scientific applications.By the end of this book, you will know how to perform fast and accurate scientific computing in Python.What you will learn Group, aggregate, transform, reshape and filter data to discover meaningful insights Combine and merge data from different sources through Pandas SQL-like operations Create beautiful and insightful visualizations through Pandas direct hooks to Matplotlib and Seaborn Perform efficient and powerful analyses with Pandas time series functionality Build pipelines to import, clean and prepare real-world messy data sets for machine learning Create big data workflows for processing data that is too large to fit in the memory About the AuthorTed Petrouis a data scientist at Schlumberger where he spends the vast majority of his time exploring data. Some of his projects include using targeted sentiment analysis to discover the root cause of part failure from engineer text, developing customized client/server dashboarding applications and real-time web services to avoid mispricing of sales items. Ted received his Masters degree in statistics from Rice University and used his analytical skills to play poker professionally and teach math before becoming a data scientist. He is also head of Houston Data Science and a top Pandas answerer on stackoverflow.

Free Direct Download

Get Free Access to Download this and other Thousands of Books (Join Now)

For read this book you need PDF Reader Software like Foxit Reader

Accessing books through legal platforms and public libraries not only supports the rights of authors and publishers but also contributes to the sustainability of reading culture. Before downloading, please take a moment to consider these options.

Find this book on other platforms:

WorldCat helps you find books in libraries worldwide.
See ratings, reviews, and discussions on Goodreads.
Find and buy rare or used books on AbeBooks.

Authors:


Reviews:


4.3

Based on 0 users review