Python Data Cleaning and Preparation Best Practices

5.0

بر اساس نظر کاربران

شما میتونید سوالاتتون در باره کتاب رو از هوش مصنوعیش بعد از ورود بپرسید
هر دانلود یا پرسش از هوش مصنوعی 2 امتیاز لازم دارد، برای بدست آوردن امتیاز رایگان، به صفحه ی راهنمای امتیازات سر بزنید و یک سری کار ارزشمند انجام بدین

Take your data preparation skills to the next level by converting any type of data asset into a structured, formatted, and readily usable dataset Key Features • Maximize the value of your data through effective data cleaning methods • Enhance your data skills using strategies for handling structured and unstructured data • Elevate the quality of your data products by testing and validating your data pipelines Book Description Professionals face several challenges in effectively leveraging data in today's data-driven world. One of the main challenges is the low quality of data products, often caused by inaccurate, incomplete, or inconsistent data. Another significant challenge is the lack of skills among data professionals to analyze unstructured data, leading to valuable insights being missed that are difficult or impossible to obtain from structured data alone. To help you tackle these challenges, this book will take you on a journey through the upstream data pipeline, which includes the ingestion of data from various sources, the validation and profiling of data for high-quality end tables, and writing data to different sinks. You’ll focus on structured data by performing essential tasks, such as cleaning and encoding datasets and handling missing values and outliers, before learning how to manipulate unstructured data with simple techniques. You’ll also be introduced to a variety of natural language processing techniques, from tokenization to vector models, as well as techniques to structure images, videos, and audio. By the end of this book, you’ll be proficient in data cleaning and preparation techniques for both structured and unstructured data. Who is this book for? Whether you're a data analyst, data engineer, data scientist, or a data professional responsible for data preparation and cleaning, this book is for you. Working knowledge of Python programming is needed to get the most out of this book. What you will learn • Ingest data from different sources and write it to the required sinks • Profile and validate data pipelines for better quality control • Get up to speed with grouping, merging, and joining structured data • Handle missing values and outliers in structured datasets • Implement techniques to manipulate and transform time series data • Apply structure to text, image, voice, and other unstructured data

دانلود رایگان مستقیم

برای دانلود رایگان این کتاب و هزاران کتاب دیگه همین حالا عضو بشین

برای خواندن این کتاب باید نرم افزار PDF Reader را دانلود کنید Foxit Reader

دسترسی به کتاب‌ها از طریق پلتفرم‌های قانونی و کتابخانه‌های عمومی نه تنها از حقوق نویسندگان و ناشران حمایت می‌کند، بلکه به پایداری فرهنگ کتابخوانی نیز کمک می‌رساند. پیش از دانلود، لحظه‌ای به بررسی این گزینه‌ها فکر کنید.

این کتاب رو در پلتفرم های دیگه ببینید

WorldCat به شما کمک میکنه تا کتاب ها رو در کتابخانه های سراسر دنیا پیدا کنید
امتیازها، نظرات تخصصی و صحبت ها درباره کتاب را در Goodreads ببینید
کتاب‌های کمیاب یا دست دوم را در AbeBooks پیدا کنید و بخرید

نویسندگان:


نظرات:


5.0

بر اساس 1 نظر کاربران

the_melting
the_melting

29 ژون 2025، ساعت 15:14

The book excels in demonstrating both structured and unstructured data handling, offering end-to-end code examples for practical implementation. Its sections on optimizing and tuning operations like joining and merging are especially strong, showing how these techniques can significantly impact code performance. The detailed testing methods included help users understand the performance trade-offs of their operations. Additionally, the chapter on large language models (LLMs) is a highlight, showing how to combine modern techniques with traditional problem-solving approaches, bridging older and newer technologies.