The Practitioner's Guide to Data Quality Improvement

4.5

بر اساس نظر کاربران

شما میتونید سوالاتتون در باره کتاب رو از هوش مصنوعیش بعد از ورود بپرسید
هر دانلود یا پرسش از هوش مصنوعی 2 امتیاز لازم دارد، برای بدست آوردن امتیاز رایگان، به صفحه ی راهنمای امتیازات سر بزنید و یک سری کار ارزشمند انجام بدین

کتاب های مرتبط:

مروری کلی بر کتاب

کتاب «The Practitioner's Guide to Data Quality Improvement» نوشته دیوید لوشین، یک منبع جامع و کاربردی برای ارتقاء کیفیت داده‌ها در سازمان‌ها ارائه می‌دهد. این کتاب به بررسی روش‌های موثر در بهبود کیفیت داده می‌پردازد، جنبه‌های مختلفی از جمله تشخیص خطاها، تکنیک‌های پاک‌سازی، و پیاده‌سازی داده‌های استاندارد را پوشش می‌دهد.

خلاصه کتاب

این کتاب به تفصیل به چالش‌های مزمن کیفیت داده، که بسیاری از سازمان‌ها با آن‌ها دست و پنجه نرم می‌کنند، می‌پردازد. نویسنده ابزارها و اصولی که برای ارزیابی، تبیین و بهبود کیفیت داده ضروری هستند را توضیح می‌دهد. در این کتاب، خوانندگان با مفاهیم اساسی نظیر Data Profiling، Data Cleansing و Data Governance، و همچنین نحوه پیاده‌سازی فرآیند‌های کیفیت داده در سطح سازمان آشنا می‌شوند.

دیوید لوشین با بهره‌گیری از تجربیات عملی، راهنمایی‌هایی کاربردی و قابل اجرا ارائه می‌دهد. او به نحوی ساخت‌یافته و متمرکز، به مدیران داده و تحلیل‌گران نشان می‌دهد که چگونه می‌توانند فرایندهای دستی و خودکار را در جهت بهبود کیفیت داده‌ها طراحی و پیاده‌سازی کنند.

نکات کلیدی

  • فهم دقیق «Data Quality Dimensions» و چگونگی ارزیابی آن‌ها.
  • ابزارها و تکنیک‌های پیشرفته در Data Profiling و Data Cleansing.
  • نقش Data Governance در ارائه یک چارچوب قوی برای بهبود مستمر کیفیت داده‌ها.
  • چگونگی پیاده‌سازی یک برنامه Data Quality Management موثر.

جملات معروف از کتاب

"Quality data is no longer a luxury; it is a necessity for making informed decisions."

"Data quality is not a one-time project, but a persistent endeavor that requires continuous vigilance."

چرا این کتاب مهم است؟

در دنیای کنونی که تصمیم‌گیری بر اساس داده‌ها اهمیت بسیاری پیدا کرده است، داشتن داده‌های با کیفیت و قابل اعتماد ضروری است. این کتاب کمک می‌کند تا سازمان‌ها بتوانند با تمرکز بر بهبود کیفیت داده‌های خود، نه تنها اثربخشی خود را افزایش دهند بلکه از تصمیم‌گیری‌های نادرست و پرهزینه نیز جلوگیری کنند. «The Practitioner's Guide to Data Quality Improvement» با ارائه راه‌حل‌های عملی و استراتژی‌های بلندمدت، مسیری روشن برای تحقق این هدف فراهم می‌کند.

علاوه بر این، این کتاب با ارائه دیدگاه‌هایی نوین در حوزه مدیریت کیفیت داده و جلب توجه به اهمیت آن در حفظ مزیت رقابتی، نقشی کلیدی در ارتقاء سطح آگاهی مدیران و متخصصان ایفا می‌کند.

The Practitioner's Guide to Data Quality Improvement: Introduction

Data quality is more crucial today than ever, as organizations across industries increasingly rely on data-driven decision-making. "The Practitioner's Guide to Data Quality Improvement" unravels the complexities of data quality management and provides actionable strategies for enhancing data quality within any organization. This guide is an essential resource for practitioners, managers, and leaders who are passionate about leveraging high-quality data for competitive advantage.

Detailed Summary of the Book

The book begins by laying a foundational understanding of what data quality is and why it is vital for operational success and strategic initiatives. It explores the multifaceted dimensions of data quality, including accuracy, completeness, consistency, timeliness, and relevance. Through a structured approach, readers are introduced to data quality assessment frameworks, methodologies, and tools necessary to diagnose and address data quality challenges effectively.

Emphasizing a systemic perspective, the book discusses how data quality improvement is not a one-off task but a continuous journey that integrates into an organization's culture and processes. It provides insights into establishing a data quality governance framework and discusses the roles and responsibilities within a data stewardship model. These elements form the backbone of sustaining high data quality over time.

The book is rich with case studies and real-world examples that illustrate common data quality problems and the innovative solutions that businesses have employed to overcome them. These practical insights help readers visualize the application of data quality principles in diverse organizational contexts.

Key Takeaways

  • Understanding core data quality dimensions and how they impact business operations.
  • Strategies for implementing and maintaining a robust data quality management program.
  • How to integrate data quality improvement into organizational culture and workflows.
  • Insights into data governance and the role of data stewardship.
  • The importance of aligning data quality initiatives with business objectives.

Famous Quotes from the Book

"Data is the new oil, but only when it is refined to high quality can it fuel intelligent decision-making."

"Data quality is not a destination; it is a continuous journey that requires persistent effort and strategic alignment."

Why This Book Matters

In an era where data is pivotal to business success, the consequences of poor data quality can be significantly damaging, ranging from flawed decision-making to financial losses and reputational harm. This book addresses these concerns by equipping practitioners with the knowledge and tools necessary to improve data quality and turn data into a reliable asset.

The practical, hands-on nature of this guide distinguishes it from other theoretical texts. It not only emphasizes the theoretical frameworks needed to understand data quality but also provides actionable steps and real-life examples to apply these concepts in practice. Readers gain a comprehensive understanding of how to proactively manage data quality, ensuring data integrity and enhancing organizational performance.

Ultimately, "The Practitioner's Guide to Data Quality Improvement" serves as both an educational resource and a pragmatic tool, enabling data professionals to instill a culture of data excellence that drives business innovation and success.

دانلود رایگان مستقیم

برای دانلود رایگان این کتاب و هزاران کتاب دیگه همین حالا عضو بشین

نویسندگان:


نظرات:


4.5

بر اساس 0 نظر کاربران