Rational Points on Modular Elliptic Curves

4.6

بر اساس نظر کاربران

شما میتونید سوالاتتون در باره کتاب رو از هوش مصنوعیش بعد از ورود بپرسید
هر دانلود یا پرسش از هوش مصنوعی 2 امتیاز لازم دارد، برای بدست آوردن امتیاز رایگان، به صفحه ی راهنمای امتیازات سر بزنید و یک سری کار ارزشمند انجام بدین

معرفی کتاب 'Rational Points on Modular Elliptic Curves'

کتاب 'Rational Points on Modular Elliptic Curves' یکی از آثار ارزشمند در حوزه ریاضیات و به‌ویژه در زمینه مطالعه Elliptic Curves و تئوری اعداد است. این کتاب به وسیله هنری دارمون نوشته شده است و تمرکز عمده آن بر روی فهم جامع از نقاط گویا (Rational Points) بر روی Elliptic Curves ماژولار می‌باشد.

خلاصه‌ای از کتاب

این کتاب به بررسی روندهای پیشرفته در مطالعه نقاط گویا بر روی Elliptic Curves می‌پردازد. به صورت ویژه، کتاب تئوری پشت پرده Modular Forms و نقش آن‌ها در درک ساختار و خواص این منحنی‌ها را بررسی می‌کند. هنری دارمون از رویکردی سیستماتیک و آموزشی استفاده می‌کند تا مفاهیم پیچیده ریاضی را برای دانشجویان و محققین شرح دهد. از طرفی، به کارگیری تکنیک‌های مختلف ریاضی در حل مسائل عملی و نظری در تئوری اعداد از دیگر موضوعات محوری این کتاب است.

نکته‌های کلیدی

  • بررسی کامل از اصول و مبانی Modular Elliptic Curves.
  • توضیح دقیق در مورد نقش Modular Forms در مطالعه Elliptic Curves.
  • راهکارهای جدید برای محاسبه نقاط گویا بر روی Elliptic Curves.
  • منابع و مثال‌های گوناگون جهت تفهیم بهتر مفاهیم پیچیده.

نقل‌قول‌های مشهور از کتاب

درک ریاضی از Elliptic Curves نه تنها برای تئوری‌پردازان بلکه برای اپلیکیشن‌های عملی نیز اهمیت فراوان دارد.

هنری دارمون

تحقیق در مورد Modular Elliptic Curves دروازه‌ای به سمت اسرار عمیق‌تری از ریاضیات باز می‌کند.

هنری دارمون

چرا این کتاب مهم است؟

این کتاب به دلیل جامعیت در پوشش موضوعی و دقت در ارائه مفاهیم یکی از منابع اصلی برای مطالعه Elliptic Curves در سطح پیشرفته به شمار می‌رود. علاوه بر ارزش علمی فوق‌العاده‌ای که دارد، نقش مهمی در توسعه تئوری اعداد نیز ایفا می‌کند. 'Rational Points on Modular Elliptic Curves' به ویژه برای دانشجویان دوره دکتری و پژوهشگرانی که قصد دارند در این زمینه به صورت تخصصی فعالیت کنند، منبعی غیرقابل‌جایگزین محسوب می‌شود.

Welcome to 'Rational Points on Modular Elliptic Curves', a pioneering exploration into the intersection of number theory and algebraic geometry written by Henri Darmon. This book serves as both a guide and a source of profound insights on the intricate relationships between modular forms and elliptic curves, especially concerning rational points.

Detailed Summary of the Book

The journey into the world of modular elliptic curves begins with a fundamental grounding in the basics. The book systematically introduces readers to the arithmetic of elliptic curves, followed by a thorough exploration of modular forms. A modular elliptic curve is described as a complex tangle of algebraic and geometric properties that can be understood through the lens of modular forms. Central to the narrative is the examination of the Birch and Swinnerton-Dyer conjecture, a pivotal unsolved problem in mathematics concerned with predicting the number of rational points on an elliptic curve. Readers are guided through the proof, known as the modularity theorem, that every rational elliptic curve is modular, famously linked to Andrew Wiles' proof of Fermat's Last Theorem. The book meticulously covers these concepts with clarity and depth, making it an invaluable reference for mathematicians and advanced students.

Key Takeaways

  • Interdisciplinary Insight: The book bridges gaps between number theory and geometry, providing readers with a comprehensive understanding of both fields.
  • Conceptual Clarity: Complex ideas are broken down in a manner that emphasizes understanding, rather than just technical mastery.
  • Theoretical and Practical Implications: Rational points on modular elliptic curves have practical implications in cryptography and coding theory, which are underscored throughout the book.
  • Proof of Modularity: Insights into Wiles' proof of Fermat’s Last Theorem provide historical context to modern mathematical developments.

Famous Quotes from the Book

"In the universe of numbers, modular forms serve as the cosmic fingerprints, revealing hidden symmetries and structures."

"Elliptic curves are the Rosetta Stone between algebra and geometry, translating one form into an understanding of the other."

Why This Book Matters

The significance of 'Rational Points on Modular Elliptic Curves' cannot be overstated. This book captures the essence of collaboration between two seemingly disparate branches of mathematics: number theory and algebraic geometry. It brings to light the rich history of mathematical problem-solving and the awe-inspiring story of the proof of Fermat’s Last Theorem. The book also plays a crucial role in furthering our understanding of elliptic curves, which are essential in modern computational applications like cryptographic systems.

The legacy of this book lies in its ability to inspire mathematicians of present and future generations. By peeling back the layers of complexity within modular forms and elliptic curves, it enriches our understanding of mathematics as a language capable of describing the most nuanced patterns of our universe. Whether you are a seasoned mathematician or an enthusiastic learner, 'Rational Points on Modular Elliptic Curves' offers a journey worth undertaking.

دانلود رایگان مستقیم

برای دانلود رایگان این کتاب و هزاران کتاب دیگه همین حالا عضو بشین

نویسندگان:


نظرات:


4.6

بر اساس 0 نظر کاربران