Mathematical Principles of Topological and Geometric Data Analysis (Mathematics of Data, 2)

4.8

بر اساس نظر کاربران

شما میتونید سوالاتتون در باره کتاب رو از هوش مصنوعیش بعد از ورود بپرسید
هر دانلود یا پرسش از هوش مصنوعی 2 امتیاز لازم دارد، برای بدست آوردن امتیاز رایگان، به صفحه ی راهنمای امتیازات سر بزنید و یک سری کار ارزشمند انجام بدین

معرفی کتاب

کتاب Mathematical Principles of Topological and Geometric Data Analysis (Mathematics of Data, 2) اثری جامع و پیشرفته است که توسط پروازه جوهری‌نژاد و یورگن یُست نگاشته شده است. این کتاب، به بررسی عمیق و تخصصی اصول ریاضی مرتبط با تحلیل داده‌های توپولوژیکی و هندسی می‌پردازد و حوزه‌ای را معرفی می‌کند که به شکل روزافزونی در علوم داده و یادگیری ماشین مورد توجه قرار گرفته است. در ادامه، به توضیح بخش‌های مختلف این کتاب خواهیم پرداخت.

خلاصه‌ای از کتاب

این کتاب با هدف ایجاد پلی میان علوم ریاضی محض و کاربردهای عملی در پردازش داده‌ها نوشته شده است. نویسندگان به صورت گام‌به‌گام، روش‌های توپولوژیکی نظیر Persistent Homology و توپولوژی جبری را با عمق فراوان توضیح می‌دهند. همچنین اصول هندسه دیفرانسیل و پیوند آن با تحلیل داده‌های پیچیده، به خوبی بررسی شده است.

کتاب در ابتدا مقدمه‌ای از توپولوژی و هندسه و ارتباط آن‌ها با تجزیه و تحلیل داده‌ها ارائه می‌دهد. سپس مفاهیمی مانند مانیفولدها، Graph Neural Networks و ساختارهای پیچیده توپولوژیکی مورد معرفی قرار می‌گیرد. همچنین، تکنیک‌هایی چون Mapper Algorithm و تحلیل‌های مبتنی بر فضای آماری مورد تأکید است. هر فصل شامل مثال‌های کاربردی می‌باشد تا خوانندگان نه تنها مفاهیم تئوری را بیاموزند، بلکه از کاربرد آن‌ها در حوزه‌هایی چون پردازش تصویر، بیوانفورماتیک و تحلیل شبکه‌های اجتماعی نیز بهره‌مند شوند.

نکات کلیدی

  • درک عمیق توپولوژی جبری و کاربرد آن در شناسایی ساختارهای داده‌ای.
  • کاربرد هندسه دیفرانسیل در درک مانیفولدهای غیرخطی و استخراج ویژگی‌های ظریف داده‌ها.
  • آموزش مفاهیم پیشرفته مثل Graph Neural Networks و ترکیب آن‌ها با تحلیل توپولوژیکی.
  • پیاده‌سازی الگوریتم‌ها برای حل مسائل مرتبط با خوشه‌بندی و دسته‌بندی در داده‌های چندبعدی.
  • نگاه خلاقانه به چگونگی تعامل مبانی ریاضی با علوم داده و یادگیری ماشین.

جملات مشهور از کتاب

"Topological Data Analysis is not just another method; it is a framework to rethink data representation."

پروازه جوهری‌نژاد و یورگن یُست

"Data geometry uncovers the hidden layers of information, often invisible to traditional methods."

پروازه جوهری‌نژاد و یورگن یُست

چرا این کتاب مهم است

امروزه با رشد فزاینده داده‌ها و پیچیدگی‌های آن، نیاز به استفاده از روش‌های نوین برای تحلیل داده کاملاً محسوس است. کتاب حاضر با پوشش دقیق مبانی ریاضیات پیشرفته، ابزارهای جدیدی را برای درک و تفسیر داده‌ها ارائه می‌دهد. استفاده از روش‌های توپولوژی و هندسه در تحلیل داده‌ها تنها یک رویکرد علمی نیست بلکه یک تغییر پارادایم در نحوه برخورد با داده‌های پیچیده به شمار می‌آید. این اثر برای پژوهشگران، دانشجویان، و متخصصینی که به دنبال فهم عمیق و راه‌حل‌های پیشرفته در علوم داده هستند، یک مرجع بی‌نظیر به حساب می‌آید.

Introduction to "Mathematical Principles of Topological and Geometric Data Analysis"

In an era where data is abundantly generated across diverse domains, the need for innovative tools to understand its structure has never been greater. "Mathematical Principles of Topological and Geometric Data Analysis" is a comprehensive book that offers a deep dive into the rich, cutting-edge field where mathematics, geometry, topology, and data science intersect. Designed as the second volume in the "Mathematics of Data" series, this book is both an academic treasure and a practical guide, aiming to equip readers with the theoretical tools and practical frameworks necessary for probing the shape and structure of complex datasets.

Authored by Parvaneh Joharinad and Jürgen Jost, this volume unravels the intricate mathematics behind the topological and geometric perspectives of data analysis. It provides a rigorous yet accessible exposition of fundamental principles, supported by carefully curated examples and applications that span diverse fields, from biology and social sciences to machine learning and beyond. In this book, the authors emphasize not just the "how," but also the "why"—exploring the insights and interpretations that geometric and topological techniques offer about the data.

Below is a detailed exploration of what this book offers, the key takeaways it promises, and why it stands apart in the realm of mathematical data analysis literature.

Detailed Summary of the Book

The primary focus of this book is to explore how the abstract mathematical tools of topology and geometry can be applied to understand the shape and structure of data. It begins with a gentle introduction to essential mathematical concepts, ensuring accessibility, even for those with limited prior exposure to topology or geometry.

The book discusses topological data analysis (TDA), which has emerged as a powerful approach to analyzing high-dimensional and complex datasets. Topics like homology, persistent homology, and simplicial complexes are carefully introduced, enabling readers to grasp their significance in extracting meaningful patterns.

The geometric perspective complements the topological view, emphasizing metrics, distances, and curvature-based properties that highlight how data points relate in space. By synthesizing these two mathematical approaches, the authors provide readers with a robust framework for analyzing the intrinsic structures underlying datasets.

Throughout the book, real-world applications and case studies are used to ground theory in practice. These include problems from biology, neuroscience, physics, and even social network analysis. By marrying theory with application, the book ensures a dual focus: mathematical rigor and practical relevance.

Key Takeaways

  • A clear understanding of the mathematical foundations of topology and geometry as they relate to data analysis.
  • Insight into essential concepts such as persistent homology, simplicial complexes, and manifold learning.
  • Exposure to real-world applications across fields like biology, social sciences, and artificial intelligence, demonstrating the relevance of TDA and geometric methods.
  • Development of a geometric and topological intuition for studying datasets in high-dimensional spaces.
  • Methods for integrating topological and geometric tools with machine learning workflows for enhanced data interpretation.

Famous Quotes from the Book

"Data is not just numbers; it is embedded in space, topology, and structure. Understanding these dimensions unlocks a deeper story."

"Mathematics provides the language of relationships—both local and global. The data analyst’s task is to translate patterns into meaning, a task for which topology and geometry are uniquely suited."

"Persistent homology is not just a computational tool; it’s a lens for seeing beyond noise, revealing the soul of the dataset."

Why This Book Matters

The importance of "Mathematical Principles of Topological and Geometric Data Analysis" lies in its dual approach: theoretical depth and practical applicability. The book fills a critical gap between introductory-level books on data analysis and highly specialized mathematical texts on topology and geometry.

As big data becomes increasingly central to modern research, traditional statistical methods often fall short in addressing issues like high dimensionality, noise, and non-linearity. Topological and geometric methods circumvent these challenges by capturing global patterns and relationships in ways that would otherwise be obscured.

Furthermore, the authors provide a structured pathway to learning these advanced techniques, ensuring the content is accessible to graduate students, researchers, and practitioners alike. The book encourages readers to approach data analysis not merely as a computational task but as an artful interplay of mathematics and interpretation.

Ultimately, this book is more than an academic text; it is a manifesto of how mathematics and data science can come together to illuminate the unseen, uncovering the hidden structures that govern our world.

دانلود رایگان مستقیم

برای دانلود رایگان این کتاب و هزاران کتاب دیگه همین حالا عضو بشین

نویسندگان:


نظرات:


4.8

بر اساس 0 نظر کاربران