GANs in Action: Deep learning with Generative Adversarial Networks
4.0
بر اساس نظر کاربران
شما میتونید سوالاتتون در باره کتاب رو از هوش مصنوعیش بعد از ورود بپرسید
هر دانلود یا پرسش از هوش مصنوعی 2 امتیاز لازم دارد، برای بدست آوردن امتیاز رایگان، به صفحه ی راهنمای امتیازات سر بزنید و یک سری کار ارزشمند انجام بدینکتاب های مرتبط:
Deep learning systems have gotten really great at identifying patterns in text, images, and video. But applications that create realistic images, natural sentences and paragraphs, or native-quality translations have proven elusive. Generative Adversarial Networks, or GANs, offer a promising solution to these challenges by pairing two competing neural networks' one that generates content and the other that rejects samples that are of poor quality. GANs in Action: Deep learning with Generative Adversarial Networks teaches you how to build and train your own generative adversarial networks. First, you'll get an introduction to generative modelling and how GANs work, along with an overview of their potential uses. Then, you'll start building your own simple adversarial system, as you explore the foundation of GAN architecture: the generator and discriminator networks. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
دانلود رایگان مستقیم
شما میتونید سوالاتتون در باره کتاب رو از هوش مصنوعیش بعد از ورود بپرسید
دسترسی به کتابها از طریق پلتفرمهای قانونی و کتابخانههای عمومی نه تنها از حقوق نویسندگان و ناشران حمایت میکند، بلکه به پایداری فرهنگ کتابخوانی نیز کمک میرساند. پیش از دانلود، لحظهای به بررسی این گزینهها فکر کنید.
این کتاب رو در پلتفرم های دیگه ببینید
WorldCat به شما کمک میکنه تا کتاب ها رو در کتابخانه های سراسر دنیا پیدا کنید
امتیازها، نظرات تخصصی و صحبت ها درباره کتاب را در Goodreads ببینید
کتابهای کمیاب یا دست دوم را در AbeBooks پیدا کنید و بخرید
1455
بازدید4.0
امتیاز1
نظر98%
رضایتنظرات:
4.0
بر اساس 1 نظر کاربران
veli
9 نوامبر 2025، ساعت 9:01
GANs in Action is an excellent introduction to the world of Generative Adversarial Networks (GANs) for both practitioners and enthusiasts of deep learning. Langr and Bok manage to break down complex concepts into digestible pieces, guiding the reader from fundamental theory to hands-on implementation.
The book begins by explaining the underlying mathematics of GANs and the adversarial training process, striking a good balance between clarity and depth. Each chapter includes practical examples, often implemented in Python with TensorFlow and Keras, which help solidify the reader’s understanding.
What sets this book apart is its focus on real-world applications: from image generation and style transfer to advanced topics like conditional GANs and training stability. The authors also discuss common pitfalls and challenges in GAN training, making the content realistic and applicable to actual projects.
While the book is approachable, a basic understanding of neural networks and Python programming is recommended to get the most out of it. Overall, GANs in Action is a highly practical resource for anyone looking to explore generative models, offering both the conceptual framework and actionable guidance needed to start building your own GAN projects.
Rating: 4.5/5 – Informative, practical, and highly accessible for developers and data scientists interested in generative AI.
Questions & Answers
Ask questions about this book or help others by answering
No questions yet. Be the first to ask!