Support Refhub: Together for Knowledge and Culture

Dear friends,

As you know, Refhub.ir has always been a valuable resource for accessing free and legal books, striving to make knowledge and culture available to everyone. However, due to the current situation and the ongoing war between Iran and Israel, we are facing significant challenges in maintaining our infrastructure and services.

Unfortunately, with the onset of this conflict, our revenue streams have been severely impacted, and we can no longer cover the costs of servers, developers, and storage space. We need your support to continue our activities and develop a free and efficient AI-powered e-reader for you.

To overcome this crisis, we need to raise approximately $5,000. Every user can help us with a minimum of just $1. If we are unable to gather this amount within the next two months, we will be forced to shut down our servers permanently.

Your contributions can make a significant difference in helping us get through this difficult time and continue to serve you. Your support means the world to us, and every donation, big or small, can have a significant impact on our ability to continue our mission.

You can help us through the cryptocurrency payment gateway available on our website. Every step you take is a step towards expanding knowledge and culture.

Thank you so much for your support,

The Refhub Team

Donate Now

An Introduction to Statistical Learning with Applications in R

4.7

بر اساس نظر کاربران

شما میتونید سوالاتتون در باره کتاب رو از هوش مصنوعیش بعد از ورود بپرسید
هر دانلود یا پرسش از هوش مصنوعی 2 امتیاز لازم دارد، برای بدست آوردن امتیاز رایگان، به صفحه ی راهنمای امتیازات سر بزنید و یک سری کار ارزشمند انجام بدین


Persian Summary

معرفی کتاب "An Introduction to Statistical Learning with Applications in R"

کتاب "An Introduction to Statistical Learning with Applications in R" از بهترین منابع برای یادگیری علم آماری و کاربردهای آن در R است. هدف اصلی این کتاب، فراهم کردن مقدمه‌ای جامع و قابل‌فهم برای مفاهیم یادگیری آماری با تأکید بر روش‌های کاربردی و قابل اجرا در نرم‌افزار R است، مناسب برای دانشجویان، پژوهشگران و حرفه‌ای‌های داده‌کاوی و علم داده.

خلاصه‌ای جامع از کتاب

این کتاب به بیان ساده و روشن مفاهیم پیچیده یادگیری آماری می‌پردازد. دامنه موضوعات آن از مباحث پایه‌ای مانند رگرسیون خطی و طبقه‌بندی تا موضوعات پیشرفته‌تری مانند Support Vector Machines و درخت‌های تصمیم‌گیری گسترده است. هر کدام از این بخش‌ها با مثال‌های واقعی و کدهای R همراه هستند که اجرای مفاهیم تئوری را عملی و قابل فهم می‌کنند.

نکات کلیدی

  • آموزش اصول یادگیری ماشین و تکنیک‌های آماری به صورت کاربردی
  • کار با مثال‌های متعدد در R برای درک بهتر مباحث
  • مقدمه‌ای بر روش‌های مدرن و پیشرفته یادگیری آماری
  • ساختار مرحله به مرحله آموزشی برای تسهیل فرآیند یادگیری

نقل‌قول‌های معروف از کتاب

"Understanding statistical learning requires both theory and practice, and in this book, we strive to provide both."

Gareth James et al.

"R is a powerful tool for data analysis and graphics; it’s free, easy to learn, and comes with powerful visualization tools."

An Introduction to Statistical Learning

چرا این کتاب مهم است؟

در دنیای امروز که داده‌ها نقشی حیاتی در تصمیم‌گیری‌ها ایفا می‌کنند، یادگیری ماشین و تحلیل آماری از ارزش فوق‌العاده‌ای برخوردار است. کتاب "An Introduction to Statistical Learning with Applications in R" این امکان را به مخاطبین می‌دهد تا با تمرین و پیاده‌سازی مستقیم مفاهیم، درک عمیق‌تری از این حوزه حاصل کنند و به تحلیلگران داده موفق‌تری تبدیل شوند. ساختار کتاب به‌گونه‌ای است که یادگیری را برای افراد مبتدی تا متوسط آسان و لذت‌بخش می‌کند و ازین‌رو به عنوان یک منبع آموزشی استاندارد در بسیاری از دانشگاه‌ها و دوره‌های آنلاین مورد استفاده قرار می‌گیرد.

Introduction to 'An Introduction to Statistical Learning with Applications in R'

Welcome to an insightful exploration of statistical learning, where theory meets practical application through the powerful tool known as R. This book serves as a comprehensive guide for beginners and experienced practitioners alike, delving into methodologies that enable the analysis and understanding of complex, real-world data.

Summary of the Book

This book stands as a valuable resource in the realm of statistical learning, primarily aimed at individuals who wish to glean insights from large data sets through a variety of analytical tools. The authors, Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani, bring their wealth of expertise to provide a structured introduction to key topics in statistical learning. Readers embark on a journey through linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, and clustering, to name a few.

The text is structured to build upon itself, starting with the foundational concepts vital to comprehending more intricate themes. Each chapter meticulously ensures a balance between conciseness and depth, presenting technical content in a digestible manner. Real data examples are extensively used within R, facilitating the transition from theory to practice. The fusion of theory, algorithms, and hands-on programming exercises positions this book as an essential touchstone for anyone seeking to master the art of data analysis.

Key Takeaways

  • Understanding the basics of statistical learning and its importance in the contemporary data-driven world.
  • The ability to apply a wide array of statistical learning techniques using R.
  • Insights into how to select and implement appropriate models based on data characteristics and the problem at hand.
  • An appreciation for model accuracy, interpretation, and the conflict between bias and variance.
  • Development of a practical skill set for tackling real-world data analysis challenges, derived from comprehensive examples and exercises in the text.

Famous Quotes from the Book

“Statistical learning refers to a vast set of tools for understanding data. These tools can be classified as supervised or unsupervised.”

“The essential goal of the statistical learning process is to find a function that serves as an optimal predictor of some outcome.”

Why This Book Matters

'An Introduction to Statistical Learning with Applications in R' occupies a pivotal role in bridging the gap between introductory statistical courses and the advanced conceptual landscape of data science. Its importance is further amplified in an age where data is ubiquitous, and extracting meaningful insights from it is increasingly critical for businesses, scientific research, and policy-making.

What sets this book apart is its accessibility, with narratives that patiently develop the reader's understanding of statistical learning's theoretical apparatus, while pragmatically equipping them to solve real-life data problems. It caters not only to statisticians and data scientists but also to anyone from engineers to social scientists yearning to harness the potential of vast arrays of data. The book's alignment with R also enhances its relevance, given R's status as a versatile and widely-used statistical computing tool.

In conclusion, this book is more than just an educational resource; it is an invitation to a transformative learning experience for anyone passionate about making sense of data. By entwining expert knowledge, illustrative examples, and interactive exercises, the book ensures that readers not only learn statistical techniques but also appreciate the art and science behind data analysis.

دانلود رایگان مستقیم

برای دانلود رایگان این کتاب و هزاران کتاب دیگه همین حالا عضو بشین

برای خواندن این کتاب باید نرم افزار PDF Reader را دانلود کنید Foxit Reader

نویسندگان:


نظرات:


4.7

بر اساس 0 نظر کاربران