Algorithms in Real Algebraic Geometry
4.5
بر اساس نظر کاربران
شما میتونید سوالاتتون در باره کتاب رو از هوش مصنوعیش بعد از ورود بپرسید
هر دانلود یا پرسش از هوش مصنوعی 2 امتیاز لازم دارد، برای بدست آوردن امتیاز رایگان، به صفحه ی راهنمای امتیازات سر بزنید و یک سری کار ارزشمند انجام بدینمقدمهای بر کتاب "Algorithms in Real Algebraic Geometry"
کتاب "Algorithms in Real Algebraic Geometry" یکی از منابع برجسته در زمینه هندسه جبری واقعی است که توسط Saugata Basu، Richard Pollack و Marie-Françoise Roy نوشته شده است. این کتاب یک راهنمای جامع درباره الگوریتمها و روشهای مورد استفاده در هندسه جبری واقعی ارائه میدهد که برای پژوهشگران و دانشجویان این رشته بسیار مفید است.
خلاصهای دقیق از کتاب
این کتاب به مطالعه جامعی از الگوریتمهای موجود در هندسه جبری واقعی میپردازد. این رشته ریاضی با مسائل مربوط به نقاط و اشیاء دیگر در فضاهای تعریف شده بر روی میدانهای عددی واقعی سروکار دارد. کتاب در چهار بخش اصلی تنظیم شده است: مدلسازی جبری، الگوریتمهای جدید، پیچیدگی محاسباتی و کاربردهای عملی. هر فصل به توسعه تئوری و الگوریتمهای مربوط به مشکلات خاصی در هندسه جبری واقعی میپردازد و با مثالها و تمرینات متعدد به بهتر شدن فهم خواننده کمک میکند.
نکات کلیدی
- ارائهٔ سیستماتیک از تکنیکهای حل مسائل در هندسه جبری واقعی.
- تحلیل پیچیدگی الگوریتمها برای ارزیابی کارایی آنها.
- بررسی کاربردهای واقعی کلمات تحقیقاتی در دنیای واقعی.
- ارائه تمرینها و مثالها برای تقویت یادگیری فعال.
نقل قولهای معروف از کتاب
"الگوریتمها همچون قواعد بازی ابدی هستند که همواره برای بهتر شدن نیازمند بررسی و توسعهاند."
"هر مسئلهای در هندسه جبری واقعی میتواند به عنوان یک ماجراجویی عقلانی درک شود."
چرا این کتاب مهم است؟
این کتاب به دلیل ارائهٔ دید جامعی از فضای عملی و تئوریک هندسه جبری واقعی بسیار معتبر است. اهمیت آن به ویژه برای کسانی که در حال توسعه نرمافزارها یا تحقیقاتی در این زمینه هستند، آشکار است. از آنجا که هندسه جبری واقعی تحلیلی از الگوهای هندسی در زندگی واقعی و محاسبات با عددهای واقعی ارائه میدهد، الگوریتمهای مستند در این کتاب میتوانند ابزارهای کارآمدی برای حل مسائل پیچیده و بهبود معیارهای علمی و مهندسی باشند.
Introduction to 'Algorithms in Real Algebraic Geometry'
Welcome to our comprehensive introduction of the book "Algorithms in Real Algebraic Geometry" by Saugata Basu, Richard Pollack, and Marie-Francoise Roy. This pivotal work delves into the intricate realm of real algebraic geometry, presenting algorithms that unravel the complexities of algebraic varieties over real numbers. Geared towards those with a keen interest in mathematics and computer science, this book offers both a theoretical foundation and practical guidance on algorithm development within this fascinating field.
Detailed Summary of the Book
"Algorithms in Real Algebraic Geometry" provides an exhaustive exploration into the algorithms applicable to real algebraic varieties—the solution sets of systems of polynomial equations with real coefficients. This field lies at the intersection of algebra, geometry, and computational complexity. The authors begin with a thorough grounding in the basic concepts of real algebraic geometry, paving the way for more advanced topics. Key areas include the study of semi-algebraic sets, computational real algebra, and complexity theory associated with these mathematical structures.
The book is structured to gradually lead readers through increasingly sophisticated algorithms. Starting from basic theoretical concepts, it moves on to discuss the decision problem for the first-order theory over the reals, real algebraic numbers, and topological methods. The authors meticulously cover algorithms for tasks such as quantifier elimination, which is pivotal in solving higher-level algebraic equations.
Throughout, the text is interspersed with examples to illuminate theoretical discussions, making it not only a descriptive account but also a practical guide. They also highlight the complexity considerations of these algorithms, a critical aspect for computer scientists focusing on optimization and efficiency. "Algorithms in Real Algebraic Geometry" thus stands as a comprehensive text that bridges the gap between abstract mathematical theory and applicable computational strategies.
Key Takeaways
- In-depth understanding of real algebraic geometry and its computational challenges.
- Proven and efficient algorithms for solving complex algebraic problems over real numbers.
- Insight into the decision algorithms that are fundamental to modern computational mathematics.
- Comprehension of semi-algebraic geometry and its significance in computational applications.
- Discussion of the complexity and feasibility of various algorithms in real-world scenarios.
Famous Quotes from the Book
"In the interplay between algorithm theory and real algebra, we discover bridges to both ancient concepts and cutting-edge applications, seamlessly interwoven to advance mathematical understanding."
"Navigating the complexity of algorithmic development in real algebraic geometry demands not only mathematical rigor but also a deep appreciation of computational nuances."
Why This Book Matters
The significance of "Algorithms in Real Algebraic Geometry" extends beyond its academic value; it is a vital resource in the ongoing evolution of computational mathematics. As computational demands increase in fields such as data science, machine learning, and robotics, the need for efficient algorithms that translate complex mathematical problems into solvable tasks becomes critical. This book equips researchers and practitioners with necessary tools to address these computational challenges effectively.
Moreover, the interplay between theoretical mathematics and practical implementation showcased in this book is invaluable for students and researchers alike, providing a model for adopting a holistic approach to mathematical problem-solving.
دانلود رایگان مستقیم
برای دانلود رایگان این کتاب و هزاران کتاب دیگه همین حالا عضو بشین